
A Multi-Mission Deep  Space  Telecommunications 
Analysis  Tool:  The  Telecom  Forecaster  Predictor 

Ramona H. Tung 
Jet  Propulsion  Laboratory 

California  Institute of Technology 
4500  Oak  Grove  Drive 

Pasadena,  CA 9 1 109 

Ramona.H.Tung@jpl.nasa.gov 

Abstmct-The Telecom  Forecaster  Predictor  (TFP) fulfills 
the need for a powerful,  easily  adaptable, multi-mission 
telecommunications  analysis tool. The  software is used in 
operations by five JPL  missions,  and  adaptations  exist for 13 
missions. 

Built  upon MATLABD,’, the TFP combines both  multi- 
mission and mission-specific models  to predict performance. 
Basing new mission adaptations on existing  ones while 

sharing  common  models  reduces  development time  and  the 
number of modeling  errors.  Link  configurations  are 
specified  through  a  user-friendly GUI, and  navigation  inputs 
are provided  through standard  JPL  NAIF SPICE’ SPK 
trajectory and CK  attitude files,  which the  TFP can read 
directly. 

Current work involves the development of a mission 
planning tool based on  the TFP architecture.  The  objective 
is to  create an evolvable  telecommunications  analysis tool to 
support missions from  start  to finish. The modular 
architecture of the TIT is a solid  framework upon which 
other muiti-mission  tools can be modeled. 

MS:  161-260 

8 15-354-5068 

TABLE OF CONTENTS 

1. INTRODUCTION 
2. GUI FEATURES 
3.  MODEL ARCHITECTURE 
4.  DATA  VISUALIZAT[ON 
5. CoNcLUsIoNs 

1. L\TRODUCTION3 

In the past,  telecommunication analysts  at the Jet  Propulsion 
Laboratory  (JPL) would build  their own tools  for  mission 
support.  These tools would differ in architecture, user 

’ MATLABB is n trademark of TheMathWorks, [nc. 
The Spacecraft,  Planels, instruments, C-Matrix, Events (SPICE) 

data  system is a  software system consisting of a set of standard 
database  formats  (referred to as  kernels  or SPICE files) and  a set of 
library [unctions which  allow  users to retrieve  data  from these files. 
This  software  standard  was  introduccd by JPL’s Navigation 
Ancillary Information Facility (NAIF)  Group  and is gaining 
acceptance  outside oi JPL. For more info on SPICE, see [l]. 
3 0-7803-~846-S/00/%10.00 0 2000 IEEE 

Kevin  K.  Tong 
Jet  Propulsion  Laboratory 

California Institute of Technology 
4800  Oak  Grove  Drive 

Pasadena,  CA 9 I 109 
S 18-354-7967 

Kevin.K.Tong@jpl.nasa.gov 

interface,  and software  basis4,  even though their primary 
purpose was the same.  Data  and  formulations common to 
all missions  were  not shared which  resulted in a  duplication 
of effort.  Modeling  differences  and  errors often  went 
uncorrected because there  was no convenient baseline for 
comparison.  Configuration  management, if it existed, was 
very loose. There was a  need for  an easily adaptable 
telecommunications tool for  supporting a wide variety of 
Deep  Space  missions,  and  the  TFP was created to fill this 
void. 

The TFP analysis tool, which is described in detail  in 121, is 
built  upon  the popular  MATLAB  computing environment. 
Users can  customize  their  own TFP sessions  without 
changing official  versions. Inputs  are  entered through the 
TFP’s main Graphical  User  Interface  (GUI), which has a 
characteristic  look-and-feel  independent of mission 
adaptation. A sample  TFP  GUI is shown in Figure 1. The 
building blocks  of  the TFP are  models (specialized 
MATLAB scripts)  which are  organized in a  logical  fashion. 
Model hierarchy is traceable  through  an automatically 
created model  tree, and individual models  can be examined 
using the TFP’s model editing  tool.  After execution,  outputs 
are viewable in plot or tabular’ form,  and design  control 
tables  provide  snapshots of link performance at a single  time 
point. 

The  TFP model libraries are  analogous to MATLAB 
toolboxes. Multi-mission models reside i n  an area 
accessible to all missions, whereas mission-specific models 
are  stored in individual  mission areas.  Models are  easily 
modified or replaced which allows  great tlexibility.  Existing 
mission  models are  often reused or used  as  templates by new 
missions which accelerates  development. 

MATLAB is used extensively by the scientific community, 
and provides a  familiar environment  for  TFP users. There 
are many reasons for  choosing  MATLAB as the engine  for 

MS: 16 1-260 

Previous tools were based on Microsoft@ Excel o r  PERL. 
5 Time-stamped data  can be saved in comma-separated variable 
(CSV) form for export t o  other  applications like Microsoft@ Excel. 

mailto:Ramona.H.Tung@jpl.nasa.gov
mailto:Kevin.K.Tong@jpl.nasa.gov




2.  GUI FEATURES 

The TFP GUI is a  frame  that allows several independent 
tools to work together seamlessly  to form an integrated 
simulation environment.  The  TFP  software  features 
dynamic script formation, model  tracing,  a model editing 
and viewing tool,  CUI button  linkage,  and state  saving 
capability. In addition, it has  a special  C/C++/FORTRAN 
interface for importing  navigation data. 7 

Dynnrnic Script  Formation 

Dynamic  script formation  refers to the  automatic generation 
of simulation code while parameters  are set in the  GUI. 
The  TFP internally forms the  main execution  script  from  the 
current GUI  state (which determines the top-level model  that 
controls the simulation)  and the model  libraries. There is a 
finite, but different, set of top-level  models  for each  mission, 
so use of a dynamic main script  is  cleaner and more  efficient 
than  enumerating all possible  choices with logical switch 
statements. It also  relieves  the  programmer of main script 
changes if additional GUI  inputs  are  needed. 

Model Tracing 

The model tree is  derived  from  the top-level  model 
determined by the GUI state.  It is built on demand,  and 
allows the user to visually trace through  the simulation 
sequentially  at  a  high level. When  one model calls (or 
"imports") another model, it is similar to  calling a 
subroutine: it executes  the  code in the imported model, then 
returns to the calling  model.  The  model tree depicts  the full 
hierarchy of calling and called  models. 

A sample model  tree is shown in Figure 2. The  tree is built 
in the following  manner. First, the  top-level model, 
34BWG-HighGain.ConfigA, is listed. All models that it 
imports  directly are listed  in sequential  order below it. If 
any of these models imports additional models, an extension 
arrow (>) is placed next to the model  name. In the  example, 
BWGDirEirp  imports  additional models. Following  the 
arrow shows another listing, beginning with BWGDirEirp 
followed by all the models it imports  directly.  This 
procedure is followed sequentially until the end of each 
branch is reached. 

When the Models  menu is invoked, only the models that the 
top-level model imports directly  are  shown.  The model tree 
is traversed one level at  a  time  by clicking  on the extension 
arrows. Clicking on a  model name that does not have an 
extension  arrow  automatically loads a copy of the model 
into editpar, which is the TFP's model  editing  tool. 

Editpar is the TFP's tool for editing  and viewing  models. 
An editpar window containing a sample top-level  model is 
shown in Figure 3. The tool encourages the programmer to 
write equations and algorithms in a standard  format, keeping 
code  short  and  simple.  Support  code that performs more 
complicated functions is off-loaded to scripts and  functions 
created with a text editor. In this manner, higher-level 
algorithms and simulation  flow  can be  viewed  using editpar. 
If desired,  detailed  support  code  can  be  examined using any 

text editor. 

GUI Button Linkage 

The  design  of the TFP  GUI  allows buttons to be  linked 
together to perform limited constraint  checking. In other 
words,  choosing a selection in one  button  can affect  the list 
of choices of one or more  other  buttons.  The  GUI allows an 
unlimited  level of linkages8,  but has a  built  in  mechanism 
that prevents an infinite loop if more than one level of 
linkages is used. 

State Saving 

The  save  state function is a powerful  feature of the TF'P 
GUI.  When  selected, it saves  the  current  state of the  GUI to 
a GUI  state  file  (GSF)  and  allows a user  to restore  the 
simulation  configuration in the  future. In addition, a batch 
script is automatically  generated.  This batch  script can  be 
invoked  from the MATLAB  command  line,  performs  the 
same  analysis, and saves  the  results in  a MATLAB  data file. 

If the GUI  creation  software  is  modified  after a GSF is 
saved, a warning will be issued  when  a  user tries  to restore 
the  CUI  state.  The TF'P will restore as much of the  saved 
GUI  state  as it can, then it will check  the  restored  state 
against the  saved  state  and  highlight  any differences.  A 
summary  of the saved  GUI  state  appears in  the MATLAB 
command window  (and in a log file) for reference. After  the 
user corrects any discrepancies,  the  GSF should be  saved 
again. 

3. MODEL ARCHITECTURE 

Models  are the  building blocks of the TFP.  They  are 
created using the editpar  tool,  and  translated into MATLAB 
script  files that are  combined  to  perform the requested 
analysis. The TF'P core  contains a library of common 
models,  scripts, and functions, which is accessible to all 
missions. The  common model  library is similar to a 
MATLAB  toolbox. It contains validated Deep  Space 
Network (DSN) models9, useful link analysis  computations, 

8 That is, the  selection in one  button  can affect the selections in 
another  button,  which i n  turn  may affect other  buttons, and SO 

forth. 
'I Currently, the TFP contains the latest  available DSN data. In the 
future, i t  will automatically  import DSN data  from  an  official 
rcpository  (as soon as the DSN creates  this  database).  The links to 
the database  are  already in place. 



Figure 2 Tracing  Through  the  Model  Tree 

and  general  utilities. While  common model use is not 
required, it is highly recommended because  the models 
contain  up-to-date information.  and  have proven to  be 
robust. 

Top-level models  (which are mission-specific)  control the 
flow of the simulation. Typically, there are three  types of 
top-level  models:  uplink, downlink,  and two-way". Top- 
level models of the same  type  have the same internal 
structure and  differ  only  by the  specific antenna models they 
import. Furthermore, this common structure is maintained 
regardless of the  mission adaptation; that is, all mission  top- 
level models of a given type  have the same general 
architecture. For instance, Figure 3 depicts a  typical uplink 
top-level  model showing  an  uplink  from the 34-meter beam 
waveguide (BWG) antennas" to a spacecraft's high gain 
antenna  (HGA).  Note that i t  imports the BWG transmit 
model and the HGA receive model.  The top-level model 
describing an uplink from  the  34-meter standard (STD) 
antennas'l to the spacecraft's  low gain  antenna (LGA) 
would have  exactly  the same  structure  except it would 
import the %-meter STD  transmit model and the LGA 
receive  model. These transmit and receive  models are 
usually interchangeable because the  models were written 
with a generalized  method  for accounting gains and losses. 

Dividing the TFP simulation into models  organizes the code. 
As mentioned i n  the previous  section o n  GUI  design, 
models  can be nested,  and the model  tree  displays  a visual 
hierarchy of the execution o f  the code. When  designing  the 
model architecture,  calculations and  information  common to 

l o  Two-way involves a simultaneous  uplink a n d  downlink  at  thc 
same  ground  station.  Internally, the run is orgllnired into an uplink 
followed by a downlink. 
1 '  The 3~-111etet' BWG antennas  arc in the DSN. 
lzThe 34-rnt.ter STD antennas  are  also  in the DSN. 

all missions were identified and  placed into the common 
model area. All other  calculations were placed in mission- 
specific models. Within  models, the  use of standardized 
parameter  names was adopted to simplify and accelerate the 
adaptation  process. 

The "typical" Deep  Space  telecommunications analysis was 
examined  and logically divided  into high-level models. 
Common  components  include a space loss (or path loss) 
model,  atmospheric  loss  models, and  ground  receive/ 
transmit  models. Examples of mission-specific  models are 
spacecraft  transmitheceive  models, uplink  and  downlink 
parameter initialization models,  and  output generation 
models.  Each high-level model  was further subdivided  into 
common  and mission-specific components. Related 
computations were  naturally grouped  into  blocks that could 
be  easily  replaced if missions  decided to use alternative 
models. 

A simple  philosophy  governs the organization of the 
analysis. Initially, external  data  (e.g.,  NAIF  SPICE  data) is 
brought in and  geometric,  time-based parameters  such  as 
range, azimuth,  elevation,  degrees-off-boresight (or cone), 
and clock  are  pre-calculated  for all time  points. Constants 
for conversions  (e.g.,  speed of light and  Boltzman's 
constant) and  internal indicator flags are  also initialized up 
front.  Subsequently, mission-specific constants  are  defined. 
Two  models  consolidate most  mission-specific  parameters 

so that i f  their values need updating  (such as when a new 
adaptation is being generated), they are easily  found.  After 
mission-specific constants  are  defined, a typical l ink analysis 
is performed, and outputs  are  generated.  The  different 
output  products of the TFP  are  described in the next section. 



4. DATA VISUALIZATION 

Formatted Data  Files 

The  TFP generates  a standard  set of output  files for  the 
analyst’s convenience.  These  include Design Control 
Tables  (DCTs) and a Doppler  predicts table. A DCT 
provides a  detailed snapshot  of  link  performance  at a single 
time  point. It is complete  accounting  of the  gains  and  losses 
in the  telecommunications link.  Received power  levels in 
the  carrier,  data, and ranging  channels  are  computed then 
compared with thresholds. The  TFP  produces uplink, 
downlink, and  ranging DCTs. A Doppler predicts  table is 
also returned to help DSN  ground  equipment  compensate  for 
the expected  Doppler shift. 

It is easy to create  additional  data  tiles. All major  variables 
used in a  simulation are  available after  a TFP run,  and 
MATLAB file-I/O commands  are  modeled after C, making 
it straightforward to write scripts that produce  customized 
outputs. As an example,  the TFP provides a specially 
formatted  data  rate capability  file  to  one of the JPL 
missions. 

QuickPlots m d  Reports 

QuickPlots provides  a convenient method for viewing data 
of interest i n  the Lvorkspace. The  QuickPlots menu contains 
a list of typical variables of interest to telecommunications 
analysts”. Users can select up to 9 variables to either plot 
o n  the screeniJ or save in a Report  file.  Reports  are  comma 
separated variable (CSV)  files that contain the time-stamped 
values of the selected  variables. CSV files  can  be  imported 
into standard spreadsheet programs like Microsoft Excel. 

Workspace Visdi:rrtiotz Tool 

The Workspace  Visualization Tool is a  graphical  analysis 
tool that can  quickly access  and  analyze time-based  data in 
the workspace after a run. This tool  is GUI-based and is 
called from a pull-down  menu in the TFP  CUI. I t  is 

l3 The items on this menu are easily  customirable. 
1.1 Plots o n  the S C ~ C ‘ ~ I I  can be printed  or  saved in a widc variety of 
formals  using the MATLAB print command. 

intended for users  who are not familiar with MATLM’s 
plotting commands,  and  includes a predefined  set of plot 
routines  and  filters that are  commonly used by 
telecommunications  analysts. 

5. CONCLUSIONS 
Built upon  MATLAB,  the  TFP  is a powerful,  easily 
adaptable, multi-mission analysis  tool  for  Deep  Space 
telecommunications analysis. It has  proven to be 
dependable  and  robust  through its extensive use  for mission 
support at  JPL.  Common  information  is  shared between 
missions, which  limits redundancy  and  improves accuracy. 
The  TFP  also  offers  many useful options  for viewing  and 
processing  results. 

The TFP model  architecture has been  generalized such that 
new adaptations  are usually modeled after  existing 
adaptations.  This  allows  them to inherit  the full  advantages 
of previous  adaptations.  Adherence  to current TFF’ 
modeling philosophies  and naming conventions drastically 
reduces  development time. Changing variable  names  and 
bookkeeping  strategies  for  gains and  losses  requires 
significant customization  and is not  recommended unless 
absolutely necessary. Fortunately,  the  architecture conforms 
to generally accepted  conventions  where  ever possible. 

The TFP is adaptable to support  different mission  phases, 
but currently i t  is primarily an operations tool. Immediate 
plans involve the development of a  mission  planning tool 
based on the TFP architecture.  The main objective is to 
create an evolvable telecom analysis tool  that supports a 
mission from start to finish (design  to  operations), which 
yields tremendous  savings in time and  cost.  Possible future 
endeavors include generalizing  the  TFP to analyze 
communications between  any  two bodies, such  as 
sp3cecraft-to-spacecraft or lander-to-orbiter. 

One  can  envision basing other types o f  multi-mission 
analysis tools  on the TFP architecture. Several 
telecommunications  tools  based on the TFP architecture are 
currently in use at JPL.  These  include the. Derived  Channel 
Processor, which allows  comparison of predictions with 
actual data, the Unified Telecom  Predictor, which provides  a 



specific batch mode interface to the TFP for the DSN, and 
the Radio Frequency Interference ( R H )  Analyzer, which can 
bc used to study the interference of signals from  multiple 
spacecraft.  Though the TEP models are 
tclecornmunications-specific, the TFP  software  architecture 
is general  enough to manage many types of engineering 
simulations. 

ACKNOWLEDGMENTS 

The TFP and this paper were a collaborative  effort of both 
authors.  The  authors would like to acknowledge  Bruno 
Calanche and Jeff Steinman  for their early  contributions to 
the development of the  TF". 

The research described in this paper was carried out by the 
Jet Propulsion Laboratory,  California Institute of 
Technology, under a contract with the  National  Aeronautics 
and Space Administration. 

Reference herein to  any  specific  commercial  product, 
process, or service  by trade  name,  trademark,  manufacturer, 
or otherwise, does not constitute or imply  its endorsement 
by the  United States  Government or the Jet  Propulsion 
Laboratory, California Institute  of  Technology. 

REFERENCES 
[ I ]  Chuck Acton  (at JPL), The  SPICE  Description  Paper. 

[Z] Kevin K. Tong and Ramona H. Tung, Telecom 
Forecaster Predictor (TFP)  User's Guide and Reference, 
JPL IOM 33110-99-010,  October 1, 1999. 

Ramona H. Tung is a 
telecommunications  analyst  at the 
Jet Propulsion Laboratory.  Prior  to 
designing and implementing the 
model architecture of the  TFP,  she 
helped design, build,  and  test the 
programmable  maximum-likelihood 
convolutional decoder used by the 
DSN, and supported the 
development of the Block V digital receiver.  She  serves as 
a  telecommunications  analyst and  consultant for  several of 
JPL's missions. She received her BS and MS in Electrical 
Engineering and Computer  Science from MIT in 1992 and 
1993 respectively and has been working at JPL since  1991. 

Kevin K. Tong is  a 
telecornrnunications sofhvnre 
engineer  at the  Jet Propulsion 
Laboratory. Prior to designing the 
soJlrctare and GUI architecture of 
the TFP,  he helped develop  and 
implement  the data compression 
software used by  the  Galileo S- 
Band mission.  Before corning to 
JPL in 1991, he was  involved in image processing  research 
at the Hughes  Aircraji  Cotnpany.  Kevin received his BS 
and MS in  Electrical and  Computer Engineering from the 
University of California, Los Angeles  and the  University of 
Southern  California in 1984 and 1986 respectively. 


